Ultrasonographic Evaluation of Carotid Luminal Diameter and Plaques Morphology in Stroke Patients

The aim of this study is to evaluate carotid stenosis and plaque morphology in stroke patients.

High resolution carotid ultrasound of bilateral carotid artery was done in 110 clinically proven stroke patients. Intimomedial thickness (IMT) was assessed 1-1.5 cm proximal to the bulb. For plaques the near and far walls of the arterial segments were scanned both longitudinally and transversely. Plaques were classified as low, moderate and strongly echogenic with shadowing (calcified).

Carotid luminal diameter was measured in transverse plane perpendicular to the long axis of the vessel at the end of the diastole. Percentage of stenosis was calculated using both cross sectional and velocimetric criteria.

Plaques were more common in the carotid bulb (43.6% on right side and 53.6% on left side) and most common was calcified type (29.1%) which was predominant on left side. In internal carotid artery (ICA) moderately echogenic plaques (8.1%) were more common. Plaques were less common in common carotid artery (CCA).

Duplex color Doppler sonography of the carotid artery is a noninvasive, accurate and cost effective screening modality in stroke patients.

Key words: Carotid stenosis, Doppler sonography, intimomediathickness, plaques

Address for correspondence
Ghanashyam Gurung, MD
Department of Radiology
Tribhuvan University Teaching Hospital
Maharajgunj, Kathmandu
Nepal

Email: pushpaghan@mos.com.np

Received, May 12, 2008
Accepted, June 28, 2008

Stoke is a world wide major health problem. It is one of the leading causes of morbidity, mortality and disability in developed as well as developing countries. Stroke due to atherosclerotic disease is the third leading cause of death in western countries. One third of cases are fatal and survivors of stroke victims usually have prolonged or irreversible neurological impairment.

More than 500,000 new cases of cerebrovascular accidents are reported annually. Ischemia from severe, flow limiting stenosis due to atherosclerotic disease involving the extra cranial carotid arteries is implicated in approximately 20% to 30% of stroke patients.

An estimated 80% of strokes are thromboembolic in origin, often with carotid plaque as the embolic source.

In 1951 Fisher observed atherosclerotic stenosis at the origin of the ICA. Since then it has been known as an important cause of cerebral infarction.

Although contrast injection cerebral angiography has been considered gold—standard technique for diagnosis and operative planning of carotid disease but it carries its own risk and expense.

Introduction of duplex ultrasonography is the upcoming modality for evaluation of extra cranial carotid arteries and now a days it being listed as single independent preoperative test. Besides calculating calculating the degree of stenosis, detail plaque evaluation including morphology

Ghanashyam Gurung, MD
Department of Radiology
Tribhuvan University Teaching Hospital
Maharajgunj, Kathmandu
Nepal

Ram K Ghimire, MD
Department of Radiology
Tribhuvan University Teaching Hospital
Maharajgunj, Kathmandu
Nepal

Mohan R Sharma, MD
Division of Neurosurgery
Tribhuvan University Teaching Hospital
Maharajgunj, Kathmandu
Nepal

Benu Lohani, MD
Department of Radiology
Tribhuvan University Teaching Hospital
Maharajgunj, Kathmandu
Nepal

LR pokharel, MD
Department of Radiology
Tribhuvan University Teaching Hospital
Maharajgunj, Kathmandu
Nepal

Stoke is a world wide major health problem. It is one of the leading causes of morbidity, mortality and disability in developed as well as developing countries. Stroke due to atherosclerotic disease is the third leading cause of death in western countries. One third of cases are fatal and survivors of stroke victims usually have prolonged or irreversible neurological impairment.

More than 500,000 new cases of cerebrovascular accidents are reported annually. Ischemia from severe, flow limiting stenosis due to atherosclerotic disease involving the extra cranial carotid arteries is implicated in approximately 20% to 30% of stroke patients.

An estimated 80% of strokes are thromboembolic in origin, often with carotid plaque as the embolic source.

In 1951 Fisher observed atherosclerotic stenosis at the origin of the ICA. Since then it has been known as an important cause of cerebral infarction.

Although contrast injection cerebral angiography has been considered gold—standard technique for diagnosis and operative planning of carotid disease but it carries its own risk and expense.

Introduction of duplex ultrasonography is the upcoming modality for evaluation of extra cranial carotid arteries and now a days it being listed as single independent preoperative test. Besides calculating calculating the degree of stenosis, detail plaque evaluation including morphology
Intimomedia Thickness
Right Left

Table 1. Mean IMT thickness in 110 patients.

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.85</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Materials and Methods

A total of 110 consecutive clinically proven stroke patients were (CVA cases) referred from neurosurgery and medicine department of Kathmandu model hospital between 2005 and 2007 were studied. Patients with symptomatic valvular heart disease which was severe enough to affect flow and also semicomatose patients producing enough artifacts in image were excluded.

A high resolution carotid ultrasound examination was performed with 7.5MHz linear probe for evaluation of the morphology of plaques and velocimetric characteristics. Commercially available ultrasound (TOSHIBA Nemio 30 Japan) machines with Doppler facilities were used for the same.

Carotid artery examinations were performed with the patient supine, neck slightly extended, and head turned away from the side being examined. The probe was placed on the medial side of the sternocleidomastoid muscle.

The hand-held probe was positioned first over the CCA in the lower part of the neck. By moving the probe distally and scanning in various planes, carotid bifurcation, ICAs, and external carotid arteries were identified. The vessels were scanned in both transverse and longitudinal planes. The carotid bulb was identified as mild widening of common carotid artery near the bifurcation. Intima media thickness was assessed at about 1-1.5cm proximal to the carotid bulb in longitudinal plane. The area had to be free of plaque.

The near and far wall of these arterial segments were scanned both longitudinally and transversely for the presence of plaques. Distribution of the plaques and its relation to vessel walls were recorded. Plaques were classified as low – echogenic, moderately echogenic plaque and strongly echogenic plaque with shadowing.18

Carotid luminal diameter was measured in transverse plane perpendicular to the long axis of the vessel at the end of diastole color Doppler examinations were performed with angle of insonation below 60degrees. Percentage of stenosis was calculated using both cross sectional and velocimetric criteria. In ICA at the level of maximum stenosis, the PSV and EDV were recorded. Flow velocity of CCA was also recorded. PSV ratio of ICA/CCA was calculated.

Statistical analysis was done with the help of SPSS 11.5 Software. P values were calculated using chi-square test for statistical significance.

Results

A total of 110 patients with clinical symptoms of CVA were studied. Among them 71 were male and 39 were female. The age ranged from 38 to 90 years (median age 65). Male median age was 63 and female median age was 68.

Mean Intimomedial thickness in male was 0.85mm on right side and 1.0mm on left side. In female it was 0.77mm on right side and 0.88mm on left side. There was no statistical significance difference in right and left side of IMT thickness (p>0.688 right side and p>0.805 left side).

Plaques were seen in 65 patients (59.1%). In the carotid bulb, 58 patients (52.7%) had it on the left and 48(43.6%) had it on the left and 48(43.6%)

<table>
<thead>
<tr>
<th>Sn</th>
<th>CCA</th>
<th>Carotid Bulb</th>
<th>ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
</tr>
<tr>
<td>1</td>
<td>Low</td>
<td>1(0.9%)</td>
<td>1(0.9%)</td>
</tr>
<tr>
<td>2</td>
<td>Moderately</td>
<td>3(2.7%)</td>
<td>7(6.3%)</td>
</tr>
<tr>
<td>3</td>
<td>Strongly</td>
<td>3(2.7%)</td>
<td>3(2.9%)</td>
</tr>
<tr>
<td></td>
<td>echogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>plaque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Total</td>
<td>7(6.3%)</td>
<td>11(10.1%)</td>
</tr>
<tr>
<td>5</td>
<td>p-value</td>
<td>0.687</td>
<td>0.688</td>
</tr>
</tbody>
</table>

Table 2. Distribution and morphology of plaques. Abbreviation, CCA = common carotid artery, ICA = Internal common artery, Lt = left, Rt = right.
had on right. Regarding the type, strong echogenic with shadowing (calcified) plaques was seen in 27 patients (24.5%) on right bulb and 32 patients (29.1%) on left. Two patients (1.8%) had right sided complete occlusion of CCA, carotid bulb and ICA.

In the carotid bulb, <59% stenosis was found in 26 patients (53.6%) and strongly echogenic with shadowing (calcified) plaques was seen in 27 patients (24.5%) on right side. 69 ischemic strokes occurred. They found that the intima-media thickness of the common carotid artery and the the internal carotid artery were strongly associated with the risk of myocardial infarction and stroke in asymptomatic older adults.13

Bots et al found a graded association of common carotid intima-media thickness with stroke. IMT was measured in 1373 subjects free from myocardial infarction and stroke that were followed up to for 2.7 years. Stroke risk increased gradually with increasing IMT.3

In our study mean intemomedial thickness in male on right side was 0.85mm and left side was 1.0mm. In female it was 0.77mm on right side and 0.88mm on left side.

Plaque is the one of the major risk factors for the development of stroke. Kitamura et al found that plaque more than 1.5mm thickness in the ICA had a 3 fold higher risk of stroke than those without a plaque, and the plaque surface irregularity further increased the stroke risk.10

The Northern Manhattan Study was done in 1939 stroke free subjects. Among them, carotid plaque was visualized in 56.3%. During a mean follow up of 6.2 years after ultrasound examination, 69 ischemic strokes occurred. They found the unadjusted cumulative 5-year risks of ischemic stroke as: 1.3%, 3.0% and 8.5% for no plaque, regular plaque, and irregular plaque respectively.15

The thickness is abnormal and represent the earliest changes of atherosclerotic changes.14 The mean thickness of the IM complex is related to cardiovascular risk factors, including age, smoking, and systolic blood pressure. Thickening of the I-M complex or focal plaque correlated with an increased risk for the development of cardiovascular symptoms in asymptomatic patients.17

Polak JF, et al., found that greater than 0.8mm IMT thickness is abnormal and represent the earliest changes of Plaque is the one of the major risk factors for the development of stroke. Kitamura et al found that plaque more than 1.5mm thickness in the ICA had a 3 fold higher risk of stroke than those without a plaque, and the plaque surface irregularity further increased the stroke risk.10

The Northern Manhattan Study was done in 1939 stroke free subjects. Among them, carotid plaque was visualized in 56.3%. During a mean follow up of 6.2 years after ultrasound examination, 69 ischemic strokes occurred. They found the unadjusted cumulative 5-year risks of ischemic stroke as: 1.3%, 3.0% and 8.5% for no plaque, regular plaque, and irregular plaque respectively.15

Langsfield et al studied 419 patients for 15-22 months and they found the echoluent or heterogeneous plaques to be at increased risk of becoming symptomatic compared with dense, echo rich plaques(p<0.02).11

Bock et al showed that echoluent plaques were associated with a 5.7% incidence of TIA and stroke, compared with 2.4% for echogenic plaques.2

In our study 69(62.5%) plaques were found on right side and 85(78.1%) on left side.

It was more common in carotid bulb (right 43.6% and left 53.6%). Regarding type, strongly echogenic plaque with shadowing (Type IV) was more common right side 27(24.5%)
Gurung et al
and left was 32(29.1%). After carotid bulb plaques were common in ICA and least in both CCA (6.3% on right and 9.9% on left).

Carotid artery stenosis plays a considerable part in the evolution of ischemic cerebrovascular disease. In patient with minor stroke or TIA having carotid artery stenosis of over 50% there is 20-30% risk of ipsilateral stroke within the first 30days.16

Endarterectomy is known to reduce the stroke risk in symptomatic patients with >= 50% carotid stenosis for years. The guidelines of American Heart Association recommend endarterectomy in symptomatic patients with 50-99% stenosis and in asymptomatic patients with 60-99% stenosis.1

North American Symptomatic Carotid Endarterectomy Trial (NASCET) and the European Carotid Surgery Trial demonstrated definite benefit of carotid endarterectomy in symptomatic patients with narrowing of the internal carotid artery lumen diameter by 70% to 99%.12

In our study common site for stenosis was found in carotid bulb followed by ICA and less commonly in CCA. Complete occlusion was more in ICA with right sided predominance.

Conclusions

Duplex color Doppler sonography is a noninvasive imaging modality to evaluate the carotid artery for atherosclerosis. It is the ‘Road Map’ for the identification of ICA origin, its course, relation of tortuosity and high bifurcation. Thickness of the IMT in CCA and plaques morphology are the important predictors for Cardiovascular and cerebrovascular complications. It is highly useful for differentiate between severe stenosis and complete occlusion. It is noninvasive, accurate and cost effective tool for screening of carotid artery for associated complications like stroke.

References
16. Roth well PM: Medical and surgical management of symptomatic carotid stenosis. Inter J of stroke 1:140-149, 2006